Journal of Organometallic Chemistry, 386 (1990) 225-228
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
JOM 20514

Molecular structure of binuclear complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$, synthesized from $\mathrm{Fe}(\mathrm{CO})_{5}$ and azobenzene

A.S. Katugin, A.A. Pasynskii ${ }^{\star}$, I.L. Eremenko, E.A. Vas’utinskaya
N.S. Kurnakov Institute of General and Inorganic Chemistry, U.S.S.R. Academy of Sciences, 31 Leninsky prospekt, Moscow V-71 (U.S.S.R.)

Yu.T. Struchkov and A.I. Yanovsky
A.N. Nesmeyanov Institute of Organoelement Compounds, U.S.S.R. Academy of Sciences, 28 Vavilov St., Moscow B-312 (U.S.S.R.)

(Received October 25th, 1989)

Abstract

$\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$ (I) has been synthesized in a low yield by photochemical reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with azobenzene in toluene under reflux. The complex has been characterized by an X-ray diffraction study. The $\mathrm{Fe}-\mathrm{Fe}$ bond ($2.401 \AA$) of the $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ binuclear fragment is bridged by the anthranilic acid anilide fragment coordinated to each of the Fe atoms by its PhN ($\mathrm{Fe}-\mathrm{N}$ 2.047(1) and $2.061(1) \AA)$ or $\mathrm{NH}(1.982(1)$ and $1.984(1) \AA)$ groups, respectively.

Introduction

Several examples illustrating the analogy between isoelectronic coordination of metal complexes by S_{2} and azobenzene $\mathrm{PhN}=\mathrm{NPh}$ molecules as well as by sulfur atoms and phenylimide (nitrene) fragments have been reported. For instance the following pairs of complexes $\left(\mathrm{C}_{5} \mathrm{H}_{4} \operatorname{Pr}^{\mathrm{i}}\right)_{2} \mathrm{~V}_{2}\left(\mu, \eta^{1}-\mathrm{S}_{2}\right)(\mu-\mathrm{S})_{2}$ [1] and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~V}_{2}\left(\mu, \eta^{1}-\right.$ $\left.\mathrm{Ph}_{2} \mathrm{~N}_{2}\right)(\mu-\mathrm{NPh})_{2}$ [2], $\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{S}\right)_{2}$ [3] and $\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{NMe}\right)_{2}$ [4] have similar geometries. Since the insertion of CO into the $\mathrm{S}-\mathrm{S}$ bond proceeds readily for the well known complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu, \eta^{2}-\mathrm{S}_{2}\right)$ to give the μ-dithiocarbonate complex [5], we expected the formation of the analogous complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{NPh})$ (A) in the reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with azobenzene under UV-irradiation in toluene under reflex, but the outcome was very different.

Results and discussion

The only compound which we managed to isolate in a very poor yield ($\sim 2 \%$) from the reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with azobenzene was the binuclear complex
$\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)(\mathrm{I})$ as air-stable bright-red prisms. Complex I probably results from the isomerization of the intermediate (A). On the other hand, the well known product of the reaction between $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ and azobenzene-the binuclear complex $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhN}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$ [6]-can also be the intermediate. It is evidently formed from the hypothetical $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu, \eta^{2}-\mathrm{Ph}_{2} \mathrm{~N}_{2}\right)$ and is then converted into I by CO insertion into the $\mathrm{N}-\mathrm{C}$ bond. As a result a fragment consisting of anthranilic acid anilide coordinated to the $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ group is formed which in the IR spectra gives a band at $1625 \mathrm{~cm}^{-1}$, corresponding to the ν_{CO} of the amide group.

(A)

(I)

Fig. 1. The structure of $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$.

Table 1
Atomic coordinates for $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)\left(\right.$ For $\mathrm{Fe} \times 10^{5}$, for O and $\mathrm{C} \times 10^{4}$, for $\mathrm{H} \times 10^{3}$)

Atom	\boldsymbol{x}	y	z
$\mathrm{Fe}(1)$	3103(3)	18166(3)	34075(2)
$\mathrm{Fe}(2)$	$3115(3)$	37275(3)	35620(2)
$\mathrm{O}(1)$	1151(2)	102(2)	2624(1)
$\mathrm{O}(2)$	-1582(2)	965(2)	3480(1)
$\mathrm{O}(3)$	540(2)	875(2)	4666(1)
$\mathrm{O}(4)$	1030(2)	5772(2)	3038(1)
$\mathrm{O}(5)$	-1519(2)	4610(2)	3850(1)
O(6)	544(2)	3933(2)	4938(1)
O(7)	2770(1)	2910(2)	2788(1)
$\mathrm{N}(1)$	1458(1)	2795(2)	3402(1)
N(2)	-85(1)	2929(2)	2804(1)
C(1)	801(2)	744(2)	2916(1)
C(2)	-847(2)	1294(2)	3455(2)
C(3)	491(2)	1260(2)	4175(1)
C(4)	754(2)	5002(2)	3249(1)
C(5)	-814(2)	4246(3)	3730(1)
C(6)	503(2)	3855(2)	4393(1)
C(7)	2136(2)	2705(2)	3908(1)
C(8)	2470(2)	3624(2)	4206(1)
C(9)	3087(2)	3537(3)	4710(2)
C(10)	3388(2)	2546(3)	4912(1)
C(11)	3094(2)	1636(3)	4597(2)
C(12)	2472(2)	1714(2)	4092(1)
C(13)	398(2)	3019(2)	2231(1)
C(14)	-77(2)	3105(3)	1659(1)
C(15)	403(2)	3165(3)	1088(1)
C(16)	1370(2)	3136(3)	1086(2)
C(17)	1841(2)	3051(3)	1652(1)
C(18)	1373(2)	3000(2)	2223(1)
C(19)	1922(2)	2903(2)	2809(1)
$\mathrm{H}_{\mathrm{N}}(2)$	-69(2)	292(2)	273(1)
H(8)	226(2)	427(2)	406(1)
H(9)	323(2)	415(2)	495(1)
H(10)	379(2)	249(3)	538(1)
H(11)	335(2)	97(2)	473(1)
H(12)	229(2)	112(2)	385(1)
H(14)	-76(2)	308(2)	165(1)
H(15)	-6(2)	320(2)	73(1)
H(16)	175(2)	318(2)	70(1)
H(17)	249(2)	310(2)	170(1)

The X-ray diffraction study * of I (Fig. 1) shows that the two Fe atoms form a very short single $\mathrm{Fe}-\mathrm{Fe}$ bond ($2.401 \AA$) and are also linked by the bridging N atoms of the PhN and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}$ fragments ($\mathrm{Fe}-\mathrm{N} 2.047(1)-2.061(1)$ and 1.982(1)-1.984(1) \AA, respectively). These groups are connected to each other by the CO group ($\mathrm{C}-\mathrm{O}$

[^0]Table 2
Bond lengths and bond angles for $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$ (I).

Bond	$d(\AA)$	Angle	$\omega\left({ }^{\circ}\right)$	Angle	$\omega\left({ }^{\circ}\right)$
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.402(1)$	$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{N}(1)$	$54.12(6)$	$\mathrm{Fe}(2) \mathrm{N}(1) \mathrm{C}(19)$	$118.1(2)$
$\mathrm{Fe}(1)-\mathrm{N}(1)$	$2.058(2)$	$\mathrm{Fe}(2) \mathrm{Fe}(1) \mathrm{N}(2)$	$52.52(6)$	$\mathrm{C}(7) \mathrm{N}(1) \mathrm{C}(19)$	$109.8(2)$
$\mathrm{Fe}(1)-\mathrm{N}(2)$	$1.969(2)$	$\mathrm{N}(1) \mathrm{Fe}(1) \mathrm{N}(2)$	$79.25(9)$	$\mathrm{N}(1) \mathrm{C}(7) \mathrm{C}(8)$	$120.3(2)$
$\mathrm{Fe}(1) \cdots \mathrm{H}_{\mathrm{N}}(2)$	$2.46(2)$	$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}(1)$	$54.36(6)$	$\mathrm{N}(1) \mathrm{C}(7) \mathrm{C}(12)$	$120.8(2)$
$\mathrm{Fe}(2)-\mathrm{N}(1)$	$2.052(2)$	$\mathrm{Fe}(1) \mathrm{Fe}(2) \mathrm{N}(2)$	$52.38(6)$	$\mathrm{C}(8) \mathrm{C}(7) \mathrm{C}(12)$	$109.7(2)$
$\mathrm{Fe}(2)-\mathrm{N}(2)$	$1.972(2)$	$\mathrm{N}(1) \mathrm{Fe}(2) \mathrm{N}(2)$	$79.31(9)$	$\mathrm{Fe}(1) \mathrm{N}(2) \mathrm{Fe}(2)$	$75.11(8)$
$\mathrm{Fe}(2) \cdots \mathrm{H}_{\mathrm{N}}(2)$	$2.49(2)$	$\mathrm{Fe}(1) \mathrm{N}(1) \mathrm{Fe}(2)$	$71.52(7)$	$\mathrm{Fe}(1) \mathrm{N}(2) \mathrm{C}(13)$	$118.2(2)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.455(3)$	$\mathrm{Fe}(1) \mathrm{N}(1) \mathrm{C}(7)$	$119.5(2)$	$\mathrm{Fe}(1) \mathrm{N}(2) \mathrm{H}_{\mathrm{N}}(2)$	$113(1)$
$\mathrm{N}(1)-\mathrm{C}(19)$	$1.429(4)$	$\mathrm{Fe}(1) \mathrm{N}(1) \mathrm{C}(19)$	$116.0(2)$	$\mathrm{Fe}(2) \mathrm{N}(2) \mathrm{C}(13)$	$121.2(2)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.404(3)$	$\mathrm{Fe}(2) \mathrm{N}(1) \mathrm{C}(7)$	$117.7(2)$	$\mathrm{Fe}(2) \mathrm{N}(2) \mathrm{H}_{\mathrm{N}}(2)$	$116(1)$
$\mathrm{N}(2)-\mathrm{H}_{\mathrm{N}}(2)$	$0.89(2)$			$\mathrm{C}(13) \mathrm{N}(2) \mathrm{H}_{\mathrm{N}}(2)$	$109(1)$

$1.242(3) \AA$); the $\mathrm{C}-\mathrm{NPh}$ and $\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}$ bond lengths are 1.424(3) and $1.479(3) \AA$, respectively. The interaction of the NH hydrogen atom with both metal atoms is weak ($\mathrm{Fe} \cdots \mathrm{H} 2.46(2)$ and $2.49(2) \AA$).

Experimental

All synthetic procedures were carried out under pure argon in absolute solvents. IR spectra were recorded with a Specord $75-I R$ instrument in KBr pellets. X-ray diffraction data were recorded with a Syntex $P 2_{1}\left(\lambda \mathrm{Mo} K_{\alpha}, T-100^{\circ} \mathrm{C}, \boldsymbol{\theta}-2 \boldsymbol{\theta}\right.$ scan, $2 \theta_{\text {max }} 56^{\circ}$) automatic diffractometer. Atomic coordinates, and selected bond lengths and angles are listed Tables 1 and 2, respectively.
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{6}\left(\mu-\mathrm{PhNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right)\right.$
A solution containing 0.5 g (2.6 mmol) of $\mathrm{Fe}(\mathrm{CO})_{5}$ and $0.23 \mathrm{~g}(1.3 \mathrm{mmol})$ of $\mathrm{Ph}_{2} \mathrm{~N}_{2}$ in 30 ml of toluene under reflux was irradiated with UV for 20 h . The mixture was then concentrated to 15 ml , pentane was added and the mixture was kept at room temperature for 7 d . The bright-red prisms precipitated were separated by decantation, washed with pentane and dried in vacuo at 0.1 torr. IR $\left(\nu, \mathrm{cm}^{-1}\right)$: $480 \mathrm{w}, 505 \mathrm{w}, 530 \mathrm{w}, 570 \mathrm{~m}, 610 \mathrm{w}, 620 \mathrm{w}, 670-700 \mathrm{br} . \mathrm{w}, 730 \mathrm{w}, 750 \mathrm{w}, 930 \mathrm{w}, 1015$ w, $1050 \mathrm{w}, 1100 \mathrm{w}, 1260 \mathrm{~m}, 1590 \mathrm{~m}, 1625 \mathrm{~s}, 1980$ v.s, 2020 v.s, $2065 \mathrm{~s}, 3290$ br.w.

References

1 C.M. Bolinger, T.B. Rauchfuss, A.L. Rheingold, J. Am. Chem. Soc., 105 (1983) 6321.
2 E.A. Vas'utinskaya, I.L. Eremenko, S.E. Nefedov, A.S. Katugin, A.A. Pasynskii, Yu.L. Slovokhotov, Yu.T. Struchkov, Metallorg. Khimiya, 2 (1989) 934.
3 C.H. Wei, L.F. Dahl, Inorg. Chem., 4 (1965) 493.
4 R.J. Doedens, Inorg. Chem., 8 (1969) 570.
5 J. Messelhaüser, K.U. Gutensohn, I.-P. Lorenz, W. Hiller, J. Organomet. Chem., 321 (1987) 377.
6 P.E. Baikie, O.S. Mills, J. Chem. Soc., Chem. Commun., 20 (1966)707.

[^0]: * The X-ray diffraction data show that crystals of I are in the space group Pbca, a 14.454(2), b $12.453(2), c 21.167(2) \AA, V 3810.0 \mathrm{~A}^{3}, Z=8, T-100^{\circ} \mathrm{C}, R=0.028$, data refined anisotropically by least-squares for all non-hydrogen atoms, all H atoms were located and refined.

