Journal of Organometallic Chemistry, 386 (1990) 225-228 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20514

Molecular structure of binuclear complex $Fe_2(CO)_6(\mu$ -PhNC(O)C₆H₄NH), synthesized from Fe(CO)₅ and azobenzene

A.S. Katugin, A.A. Pasynskii *, I.L. Eremenko, E.A. Vas'utinskaya

N.S. Kurnakov Institute of General and Inorganic Chemistry, U.S.S.R. Academy of Sciences, 31 Leninsky prospekt, Moscow V-71 (U.S.S.R.)

Yu.T. Struchkov and A.I. Yanovsky

A.N. Nesmeyanov Institute of Organoelement Compounds, U.S.S.R. Academy of Sciences, 28 Vavilov St., Moscow B-312 (U.S.S.R.)

(Received October 25th, 1989)

Abstract

 $Fe_2(CO)_6(\mu$ -PhNC(O)C₆H₄NH) (I) has been synthesized in a low yield by photochemical reaction of Fe(CO)₅ with azobenzene in toluene under reflux. The complex has been characterized by an X-ray diffraction study. The Fe-Fe bond (2.401 Å) of the Fe₂(CO)₆ binuclear fragment is bridged by the anthranilic acid anilide fragment coordinated to each of the Fe atoms by its PhN (Fe-N 2.047(1) and 2.061(1) Å) or NH (1.982(1) and 1.984(1) Å) groups, respectively.

Introduction

Several examples illustrating the analogy between isoelectronic coordination of metal complexes by S₂ and azobenzene PhN=NPh molecules as well as by sulfur atoms and phenylimide (nitrene) fragments have been reported. For instance the following pairs of complexes $(C_5H_4Pr^i)_2V_2(\mu,\eta^1-S_2)(\mu-S)_2$ [1] and $(C_5H_5)_2V_2(\mu,\eta^1-Ph_2N_2)(\mu-NPh)_2$ [2], Fe₃(CO)₉(μ_3 -S)₂ [3] and Fe₃(CO)₉(μ_3 -NMe)₂ [4] have similar geometries. Since the insertion of CO into the S-S bond proceeds readily for the well known complex Fe₂(CO)₆(μ,η^2 -S₂) to give the μ -dithiocarbonate complex [5], we expected the formation of the analogous complex Fe₂(CO)₆(μ -PhNC(O)NPh) (A) in the reaction of Fe(CO)₅ with azobenzene under UV-irradiation in toluene under reflex, but the outcome was very different.

Results and discussion

The only compound which we managed to isolate in a very poor yield (~2%) from the reaction of $Fe(CO)_5$ with azobenzene was the binuclear complex

 $Fe_2(CO)_6(\mu$ -PhNC(O)C₆H₄NH) (I) as air-stable bright-red prisms. Complex I probably results from the isomerization of the intermediate (A). On the other hand, the well known product of the reaction between $Fe_3(CO)_{12}$ and azobenzene—the binuclear complex $Fe_2(CO)_6(\mu$ -PhN-C₆H₄NH) [6]—can also be the intermediate. It is evidently formed from the hypothetical $Fe_2(CO)_6(\mu, \eta^2$ -Ph₂N₂) and is then converted into I by CO insertion into the N–C bond. As a result a fragment consisting of anthranilic acid anilide coordinated to the $Fe_2(CO)_6$ group is formed which in the IR spectra gives a band at 1625 cm⁻¹, corresponding to the ν_{CO} of the amide group.

Fig. 1. The structure of $Fe_2(CO)_6(\mu$ -PhNC(O)C₆H₄NH).

Table 1

Atomic coordinates for Fe₂(CO)₆(μ -PhNC(O)C₆H₄NH) (For Fe ×10⁵, for O and C ×10⁴, for H ×10³)

Atom	x	у	Z	
Fe(1)	3103(3)	18166(3)	34075(2)	
Fe(2)	3115(3)	37275(3)	35620(2)	
O(1)	1151(2)	102(2)	2624(1)	
O(2)	-1582(2)	965(2)	3480(1)	
O(3)	540(2)	875(2)	4666(1)	
O(4)	1030(2)	5772(2)	3038(1)	
O(5)	-1519(2)	4610(2)	3850(1)	
O(6)	544(2)	3933(2)	4938(1)	
O(7)	2770(1)	2910(2)	2788(1)	
N(1)	1458(1)	2795(2)	3402(1)	
N(2)	- 85(1)	2929(2)	2804(1)	
C(1)	801(2)	744(2)	2916(1)	
C(2)	- 847(2)	1294(2)	3455(2)	
C(3)	491(2)	1260(2)	4175(1)	
C(4)	754(2)	5002(2)	3249(1)	
C(5)	- 814(2)	4246(3)	3730(1)	
C(6)	503(2)	3855(2)	4393(1)	
C(7)	2136(2)	2705(2)	3908(1)	
C(8)	2470(2)	3624(2)	4206(1)	
C(9)	3087(2)	3537(3)	4710(2)	
C(10)	3388(2)	2546(3)	4912(1)	
C(11)	3094(2)	1636(3)	4597(2)	
C(12)	2472(2)	1714(2)	4092(1)	
C(13)	398(2)	3019(2)	2231(1)	
C(14)	- 77(2)	3105(3)	1659(1)	
C(15)	403(2)	3165(3)	1088(1)	
C(16)	1370(2)	3136(3)	1086(2)	
C(17)	1841(2)	3051(3)	1652(1)	
C(18)	1373(2)	3000(2)	2223(1)	
C(19)	1922(2)	2903(2)	2809(1)	
H _N (2)	-69(2)	292(2)	273(1)	
H(8)	226(2)	427(2)	406(1)	
H(9)	323(2)	415(2)	495(1)	
H(10)	379(2)	249(3)	538(1)	
H(11)	335(2)	97(2)	473(1)	
H(12)	229(2)	112(2)	385(1)	
H(14)	- 76(2)	308(2)	165(1)	
H(15)	-6(2)	320(2)	73(1)	
H(16)	175(2)	318(2)	70(1)	
H(17)	249(2)	310(2)	170(1)	

The X-ray diffraction study * of I (Fig. 1) shows that the two Fe atoms form a very short single Fe-Fe bond (2.401 Å) and are also linked by the bridging N atoms of the PhN and C_6H_4NH fragments (Fe-N 2.047(1)-2.061(1) and 1.982(1)-1.984(1) Å, respectively). These groups are connected to each other by the CO group (C-O

^{*} The X-ray diffraction data show that crystals of I are in the space group *Pbca*, a 14.454(2), b 12.453(2), c 21.167(2) Å, V 3810.0 Å³, Z = 8, T = 100 °C, R = 0.028, data refined anisotropically by least-squares for all non-hydrogen atoms, all H atoms were located and refined.

Bond	d(Å)	Angle	ω(°)	Angle	ω(°)
Fe(1)-Fe(2)	2.402(1)	Fe(2)Fe(1)N(1)	54.12(6)	Fe(2)N(1)C(19)	118.1(2)
Fe(1)N(1)	2.058(2)	Fe(2)Fe(1)N(2)	52.52(6)	C(7)N(1)C(19)	109.8(2)
Fe(1) - N(2)	1.969(2)	N(1)Fe(1)N(2)	79.25(9)	N(1)C(7)C(8)	120.3(2)
$Fe(1) \cdots H_N(2)$	2.46(2)	Fe(1)Fe(2)N(1)	54.36(6)	N(1)C(7)C(12)	120.8(2)
Fe(2) - N(1)	2.052(2)	Fe(1)Fe(2)N(2)	52.38(6)	C(8)C(7)C(12)	109.7(2)
Fe(2) - N(2)	1.972(2)	N(1)Fe(2)N(2)	79.31(9)	Fe(1)N(2)Fe(2)	75.11(8)
$Fe(2) \cdots H_N(2)$	2.49(2)	Fe(1)N(1)Fe(2)	71.52(7)	Fe(1)N(2)C(13)	118.2(2)
N(1)-C(7)	1.455(3)	Fe(1)N(1)C(7)	119.5(2)	$Fe(1)N(2)H_{N}(2)$	113(1)
N(1)-C(19)	1.429(4)	Fe(1)N(1)C(19)	116.0(2)	Fe(2)N(2)C(13)	121.2(2)
N(2)-C(13)	1.404(3)	Fe(2)N(1)C(7)	117.7(2)	$Fe(2)N(2)H_{N}(2)$	116(1)
$N(2)-H_{N}(2)$	0.89(2)	., ., .,		$C(13)N(2)H_{N}(2)$	109(1)

Bond lengths and bond angles for $Fe_2(CO)_6(\mu-PhNC(O)C_6H_4NH)$ (I).

1.242(3) Å); the C-NPh and C-C₆H₄NH bond lengths are 1.424(3) and 1.479(3) Å, respectively. The interaction of the NH hydrogen atom with both metal atoms is weak (Fe \cdots H 2.46(2) and 2.49(2) Å).

Experimental

All synthetic procedures were carried out under pure argon in absolute solvents. IR spectra were recorded with a Specord 75-IR instrument in KBr pellets. X-ray diffraction data were recorded with a Syntex $P2_1$ (λMoK_{α} , T - 100 °C, $\theta - 2\theta$ scan, $2\theta_{max}$ 56°) automatic diffractometer. Atomic coordinates, and selected bond lengths and angles are listed Tables 1 and 2, respectively.

$Fe_2(CO)_6(\mu - PhNC(O)C_6H_4NH)$

A solution containing 0.5 g (2.6 mmol) of Fe(CO)₅ and 0.23 g (1.3 mmol) of Ph₂N₂ in 30 ml of toluene under reflux was irradiated with UV for 20 h. The mixture was then concentrated to 15 ml, pentane was added and the mixture was kept at room temperature for 7 d. The bright-red prisms precipitated were separated by decantation, washed with pentane and dried in vacuo at 0.1 torr. IR (ν , cm⁻¹): 480 w, 505 w, 530 w, 570 m, 610 w, 620 w, 670-700 br.w, 730 w, 750 w, 930 w, 1015 w, 1050 w, 1100 w, 1260 m, 1590 m, 1625 s, 1980 v.s, 2020 v.s, 2065 s, 3290 br.w.

References

- 1 C.M. Bolinger, T.B. Rauchfuss, A.L. Rheingold, J. Am. Chem. Soc., 105 (1983) 6321.
- 2 E.A. Vas'utinskaya, I.L. Eremenko, S.E. Nefedov, A.S. Katugin, A.A. Pasynskii, Yu.L. Slovokhotov, Yu.T. Struchkov, Metallorg. Khimiya, 2 (1989) 934.
- 3 C.H. Wei, L.F. Dahl, Inorg. Chem., 4 (1965) 493.
- 4 R.J. Doedens, Inorg. Chem., 8 (1969) 570.
- 5 J. Messelhaüser, K.U. Gutensohn, I.-P. Lorenz, W. Hiller, J. Organomet. Chem., 321 (1987) 377.
- 6 P.E. Baikie, O.S. Mills, J. Chem. Soc., Chem. Commun., 20 (1966)707.

Table 2